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1. Introduction and summary

Understanding of confinement in QCD is one of the long-standing problems in particle

physics. Quarks are confined, and force between them develops a linear potential described

by a confining non-Abelian flux tube, which is called QCD string. This flux tube is expected

to be described by dual Meissner effect. In the Meissner effect, magnetic flux is confined

due to condensation of electrically charged fields (Higgs fields), which is well described

by Abelian-Higgs model. The magnetic vortex string solution in that model is called

ANO(Abrikosov-Nielsen-Olesen) vortex [1].

The duality used in this argument, which mimics the electric-magnetic duality in

Maxwell theory, should be generalized to a non-Abelian duality. The renowned Seiberg’s

duality [2, 3] provides a proper basis for addressing this problem, in N = 1 supersymmet-

ric non-Abelian gauge theories. In some situations of the non-Abelian Seiberg duality, the

dual “magnetic” theory is weakly coupled at low energy while the original “electric” theory

is strongly coupled, thus classical ANO-like strings may be constructed in the magnetic

theory, as a concrete realization of the QCD string. In this paper, we construct a classical

non-BPS vortex string solution in a Seiberg-dual of N = 1 supersymmetric QCD with non-

Abelian gauge groups which flows to a supersymmetric confining phase at low energy. As

for construction of classical non-Abelian vortex strings in the spirit of studying the QCD

strings, see [4 – 7].

There is an interesting coincidence. This Seiberg’s dual theory which is IR free was

used recently [8] to reveal that in fact in N = 1 supersymmetric QCD there is a meta-

stable supersymmetry-breaking vacua, in addition to the supersymmetry-preserving vacua.

Here “QCD” means non-Abelian gauge theories with “quark” matter fields in the vector

(fundamental) representation of the gauge group. Our previous paper [9] studied solitons

in these meta-stable vacua. In particular, we have shown there that for the dual of the

SU(Nc) QCD there is no vortex string, while for the dual of the SO(Nc) gauge theories with

Nf flavors (the dual gauge group is SO(N) with N = Nf −Nc+4), there are vortex strings.

(For U(Nc) gauge theories, there are vortex strings associated with the U(1) subgroup.)
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In view of the problem of the QCD strings, is the presence of these vortex strings in the

meta-stable vacua just a coincidence?

In fact, these vortex strings in the meta-stable vacua are actually directly related to

strings in supersymmetric vacua, in the following way. The meta-stable vacua in [8] are

obtained when all the quarks obtain masses. If we tune the masses for the Nf quarks

in the electric theory as m = (µ2, · · · , µ2, 0, · · · , 0) where the first N entries are nonzero,

the meta-stable vacua restore supersymmetries, as described in [9]. The non-BPS vortex

solutions with these tuned mass parameters in the supersymmetric vacua have the same

form as those found in [9]. So, vortex strings found in [9] are expected to be dual of the

QCD strings.

In order to identify our classical vortex strings with the QCD strings, there are two

issues. One is the stability, and the other is the phase. The following are resolution of

these issues. The first issue is that in the real QCD the QCD strings are unstable. Long

strings can break via a pair creation of a quark and an antiquark, so any infinitely long

string cannot be stable, in the presence of dynamical quarks. To evade this difficulty, in

this paper we consider non-Abelian gauge group SO(Nc) instead of usual SU(3) QCD. In

SO(Nc) gauge theories, Wilson loops in the spinor representation can be defined, and asso-

ciated QCD strings are stable because they cannot be broken by quarks lying in the vector

representation. This is consistent with our findings in [9]; only for SO(Nc) gauge groups,

we found nontrivial topological charges for the vortex strings. (U(Nc) gauge theories can

accommodate strings, but they are asymptotically non-free because of the crucial U(1)

factor necessary for the vortices to live1). Furthermore, as is well-known, Seiberg’s duality

for SO(2) gauge theory with no flavor, Nf = 0, reduces to the electric-magnetic duality in

the Maxwell theory (the dual group is SO(2) ∼ U(1)), thus the SO(N) series of the duality

is not special but naturally shows up.

The other issue is the phase. We have to make sure that the electric (original) theory

is in the confining phase at low energy, so that the theory actually has the confining QCD

strings. The recipe for this has been studied by M. Strassler [10] (see also [11, 12]) who

first developed the idea of this identification of the QCD strings with the vortex strings in

Seiberg-dual of SO(Nc) QCD. Our procedures for a confining phase is as follows. First we

explicitly construct a classical vortex solution in the dual SO(N) theory at low energy, with

the quark masses (in the electric theory) arranged as above. The theory is in confining

phase at low energy due to the monopole condensation [3]. Thus our classical vortex string

can be naturally identified as a QCD string, because our solutions are string-like objects

which carry magnetic flux in the theory Seiberg-dual to the confining gauge theory. The

vortex string solution has the tension of the scale µ2, and is reliable for µ2 < Λ2 where

Λ is the scale at which the magnetic SO(N) theory is strongly-coupled. The usual QCD

string should have the scale of Λ, thus accordingly we bring µ to be large and closer to the

scale Λ. For large µ, N quarks are massive and decoupled, resulting in the electric theory

with Nf − N = Nc − 4 flavors whose supersymmetric vacuum is in a confining phase at

1This U(1) is obtained by gauging the U(1)Baryon global symmetry which is common for electric and mag-

netic theories. Consequently, the electric theory has the same U(1) gauge symmetry and is asymptotically

non-free.
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energy lower than Λ [3]. This final procedure, at the same time, brings the tension of our

vortex string to roughly equal to that of the QCD string. Note that bringing µ to the large

value requires a large gauge coupling constant of that energy scale, via renormalization

group. There our tree-level analysis of the vortex soliton solutions is not valid, but they

are topologically protected and are expected to remain for large µ. Our procedure relates

the classical vortex strings in the magnetic theory (which sat at free magnetic phase at

µ = 0) with the confining phase (large µ).

In the following, we will present a classical vortex string solution in the Seiberg-dual

of the N = 1 supersymmetric SO(Nc) QCD with Nf quarks in the vector representation.

When Nf = Nc − 2, the dual (magnetic) theory has the gauge group SO(Nf − Nc +

4) = SO(2) ∼ U(1), and we will find a vortex string solution as a direct analogue of the

well-known ANO string solution in the Abelian-Higgs model. This is consistent with the

topological argument of [9] that the vortex strings have a Z charge. Our fluctuation analysis

will show that our vortex string is stable classically. For generic N ≥ 3, the topological

charge is Z2 as shown in [9]. There we will show that a special embedding of the ANO

string solution exists.

2. SO(Nc) theory and its supersymmetric vacua

We consider a Seiberg-dual of the SO(Nc) N = 1 supersymmetric QCD with Nf quarks in

the vector representation of SO(Nc). The matter content of the dual magnetic theory for

generic dual gauge group SO(N) with N = Nf − Nc + 4 is [2]

SO(N) SU(Nf ) U(1)′ U(1)R
Φ[Nf×Nf ] 1 ¤¤ −2 2

ϕ[N×Nf ] ¤ ¤̄ 1 0

For 3
2(Nc − 2) ≥ Nf ≥ Nc − 2, the magnetic theory is IR free and in the so-called free

magnetic phase, which we shall make use of. (For Nf = Nc − 3 or Nc − 4, the theory is

confining, and so later we shall introduce quark mass terms to move from the free magnetic

phase to the confining phase.) The Kähler potential, the superpotential and the D-term

potential are

K = Tr[ϕ†ϕ] + Tr[Φ†Φ], W = hTr
[
ϕT Φϕ − MqΦ

]
, VD =

g2

2

∑

A

∣∣∣ϕ†
iTAϕi

∣∣∣
2
. (2.1)

The symmetric Nf × Nf matrix Mq is the quark mass matrix in the electric theory. The

theory resembles O’Raifeartaigh model, and, in fact, when all the quarks in the electric

theory have the same non-zero masses,

Mq = diag(µ2, · · · , µ2), (2.2)

there is a meta-stable vacuum in the magnetic theory. The flavor symmetry SU(Nf )×U(1)′

is broken down to O(Nf ) because of the quark mass term. The vacuum of this theory,

meta-stable supersymmetry-breaking one and the one with supersymmetries dynamically
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restored, were studied in detail in [8]. The meta-stable supersymmetry-breaking vacuum

is given by

Φ = 0, ϕ =

(
ϕ0

0

)
, with ϕ0 = µ1[N×N ]. (2.3)

The vacuum expectation value ϕ0 gives color-flavor locking. The vacuum has a cosmological

constant, Vmin = (Nf − N)|h2µ4|.
We are interested in supersymmetric vacua which are directly accessible from this meta-

stable vacuum, to relate our vortex solutions obtained in [9] with objects in supersymmetric

vacua. As described in the introduction, and as already studied in our previous paper [9],

if we align the quark masses in the electric theory as

Mq = diag(µ2, · · · , µ2, 0, 0, 0, · · · , 0) (2.4)

in which only the first N0 entries are non-zero with N0 ≤ N , then the meta-stable vac-

uum restores supersymmetries perturbatively, and is identified with the supersymmetric

vacuum of the theory. (If N0 > N , perturbative vacua in which our vortices live are the

supersymmetry-breaking meta-stable vacua which are not of our interest in this paper.)

With this choice of the quark masses, the “rank condition” in [8] is satisfied, thus the

cosmological constant of course vanishes. The supersymmetric vacuum is

Φ =

(
0 0

0 Φ0

)
, ϕ =

(
ϕ0

0

)
. (2.5)

where Φ0 is arbitrary constant symmetric matrix with the size (Nf −N0)× (Nf −N0), and

the diagonal N × N matrix ϕ0 is

ϕ0 = diag(µ2, · · · , µ2, 0, · · · , 0) (2.6)

where the first N0 entries are nonzero. This gives a color-flavor locking. Because of the

quark mass matrix (2.4), the flavor symmetry of the original theory SU(Nf ) × U(1)′ is

explicitly broken down to O(N0) × U(Nf − N0). Therefore the present vacuum manifold

is quite different from the meta-stable vacuum manifold of [8, 9]. Our vacuum manifold

is just a point2 (times the space spanned by Φ0), and the symmetry of the vacuum is

SO(N0)C+F × G, where the first SO(N0)C+F is the color-flavor locking symmetry, and

G ∈ U(Nf −N0) is the symmetry preserved by Φ0: for example if Φ0 = 0, G = U(Nf −N0).

Accordingly, our situation is different from [13] where a “Seiberg-like” dual of semilocal

vortex moduli space was studied. The vacuum has a modulus Φ0, which survives even in

the limit of large µ to the confining phase.

In the case of N = 2 in which the magnetic theory has SO(2) ∼ U(1) gauge group and

so is in Abelian Coulomb phase, the superpotential (2.1) is a little modified [3] as

W = h


a(t)

Nf∑

i,j=1

Φijq
+
i q−j − µ2

N0∑

i=1

Φii


 . (2.7)

2Precisely speaking, the vacua consist of two points, Z2 = O(N0)/SO(N0).
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Here q±i are “monopoles” which possess electric U(1) charges in the dual SO(2) ∼ U(1)

theory. In the superpotential, t ≡ (det Φ)/Λ2(Nc−2) and a(0) = 1. The mass for the quarks

in the electric theory was already chosen as (2.4) so that the vacuum is supersymmetric; so

we have two choices, N0 = 1 or N0 = 2. The superpotential (2.7) looks different from (2.1),

but in fact they are very similar to each other. If we redefine the matter chiral superfields

as

q+
i = ϕ1

i + iϕ2
i , q−i = ϕ1

i − iϕ2
i , (2.8)

where the upper indices are for the SO(2) vector representation, then (2.7) reduces to (2.1)

except for the difference of the factor a(t). For deriving the vacuum for N = 2 with the

choice of the quark mass matrix (2.4) with N0 = N , in fact this factor a(t) is irrelevant, so

the supersymmetric vacuum configuration is again (2.5). The dual quarks (which are the

“monopoles”) condense and the theory is in the Higgs phase with massive photons.

3. Vortex string solution

What we have shown in our previous paper [9] was that even in this vacua (2.5) with

supersymmetries unbroken, there exists a non-BPS vortex string solution, for the case of

U(Nc) gauge groups. Here we explicitly generalize the study given there to the theory

with SO(Nc) gauge groups, to relate the classical vortex strings with the QCD strings in

confining gauge theories.

The existence of the non-BPS vortex string in the case of SO(N) magnetic theory can

be seen in its brane configuration. The U(N) case was studied in our previous paper, and its

generalization to the SO(N) case is straightforward. The brane configuration representing

the vacuum of the SO(N) magnetic theory, derived by using the brane realization [14] of

the Seiberg-duality in the Hanany-Witten configurations [15], was given in [16] and shown

in the table 1.3 (Note that [16] studied the supersymmetry-breaking meta-stable vacua

while we are interested in the quark mass alignment (2.4), so all the D4-branes are parallel

to each other in our case, as studied in our previous paper [9] for the U(N) case.) As

in [9], we can add a D2-brane suspended between the D4-branes and the NS5-brane. This

D2-brane is oriented along x3 and x4 directions. This is the vortex string we are interested

in. The orientifold requires that a mirror D2-brane should be added properly. This brane

realization of vortices is along the original idea of [18, 19].

So, string theory predicts the existence of a non-BPS vortex string solution in this

magnetic SO(N) theory. Being helped by this prediction, we are able to find an explicit

solution of the vortex string. For the case of SO(N) with N > 2, the vortex string solution

can be constructed by an embedding of the ANO string into an SO(2) sub-sector in the

SO(N). For the case of SO(2), we will find that the solution is in fact just a multiple-copied

ANO solution.

For our purpose to show the dual counterpart of the QCD string, it is enough to

consider one choice of N , so let us study the SO(2) case which is the simplest. Furthermore

3For SU(Nc) case and its M-theory lift, see [17].
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NS 1 2 3 – – – – 8 9

NS’ 1 2 3 4 5 – – – –

D6 1 2 3 – – – 7 8 9

D4 1 2 3 – – 6 – – –

O4 1 2 3 – – 6 – – –

D2 – – 3 4 – – – – –

Table 1: Brane configuration for the magnetic theory with SO(N) gauge group. We add a D2-brane

(the lowest row) to represent the vortex string.

we consider N0 = N for the quark mass (2.4). Later we study the case of general N . The

potential derived from the superpotential (2.7) and the D-term potential are

V = VF + VD

= h2|a(t)q+
1 q−1 −µ2|2 + h2|a(t)q+

2 q−2 −µ2|2 + h2

Nf∑

i=3

|a(t)q+
i q−i |2

+
1

2
h2a(t)2

Nf∑

i6=j

|q+
i q−j +q+

j q−i |2 +
g2

2

Nf∑

i=1

(|q+
i |2 − |q−i |2)2 + O(Φ2). (3.1)

Here we have omitted writing higher order terms in Φ because this field is kept being the

vacuum (2.5) for obtaining the vortex string solution. So we can take t = 0 and therefore

a(t) = 1.

We work in the convention with the monopoles q±i rather than ϕi, because the former

has direct relevance to the ANO solution, as we will find below. In terms of these monopole

fields, the vacuum (2.5) is

q+
1 = q−1 = −iq+

2 = iq−2 = µ, q±i = 0 (i ≥ 3), (3.2)

up to the Z2 ∈ O(Nf ). It is very natural that the ANO vortex string solution is embedded

in the following manner:

q+
1 = (q−1 )∗ = −iq+

2 = i(q−2 )∗ = f(r)einθ, q±i = 0 (i ≥ 3),

Aθ =
−nα(r)

g
,

A0 = A3 = 0. (3.3)

Here r ≡
√

(x1)2 + (x2)2 and θ ≡ arctan(x2/x1) span the cylindrical coordinates with x3.

One can check that this is in fact a solution of the full system. The equations for the

functions f(r) and α(r) are

d2

dr2
f +

1

r

d

dr
f − n2

r2
(α − 1)2f − h2(f2 − µ2)f = 0, (3.4)

d2

dr2
α − 1

r

d

dr
α − 8g2(α − 1)f2 = 0. (3.5)
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Figure 1: Left: The functions f(r) (solid line) and α(r) (dashed line) versus r. Right: Coupling

dependence of the vortex tension.

To derive this, we used the Kähler potential for the monopole fields as K = (|q+|2 +

|q−|2). The functions f(r) and α(r) interpolate f(0) = α(0) = 0 and the vacuum with the

winding, f(∞)/µ = α(∞) = 1. This is the same as the famous ANO solution [1] ([20]).

See figure 1. The vortex string carries n unit of the magnetic flux. The width of the vortex

measured by the monopole scalar fields is ∼ hµ, while the width of the concentration of the

magnetic flux is ∼ gµ. When h = 2g (which is the BPS limit), the tension of the vortex

string is given by 2πµ2. When h differs from the BPS value 2g , the tension is roughly

estimated as O(µ2).

The embedding ansatz is chosen so that it does not violate the vanishing of the crossing

terms (the fourth and the fifth terms) in the potential (3.1). The winding number is given

by n, which is the magnetic flux of the vortex string. This is the dual of the QCD string,

for the case of SO(Nc) supersymmetric QCD with the Nf = Nc − 4 quarks in the vector

representation of SO(Nc).

In the analysis above, we have chosen N0 = 2. However, even with N0 = 1, the electric

theory is confined after the decoupling of this single massive quark [3], since Nf = Nc − 3.

Therefore we expect that a similar vortex string solution exists also for this N0 = 1 and

N = 2. (This case of N0 = 1 is what M. Strassler studied in his original discussion [10].)

Let us present the solution. The potential is

V = h2|a(t)q+
1 q−1 −µ2|2 + h2

Nf∑

i=2

|a(t)q+
i q−i |2

+
1

2
h2a(t)2

Nf∑

i6=j

|q+
i q−j +q+

j q−i |2 +
g2

2

Nf∑

i=1

(|q+
i |2 − |q−i |2)2 + O(Φ2). (3.6)

The vacuum is unique: q+
1 = q−1 = µ and the other fields are zero. The vortex string

solution is

q+
1 = (q−1 )∗ = f(r)einθ, Aθ =

−nα(r)

g
, A0 = A3 = 0, q±i>1 = 0. (3.7)

This is the dual of the QCD string, for the case of Nf = Nc − 3. A similar solution can be

easily constructed around the massless dyon point [3] in the moduli space. But this point

– 7 –
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flows to a runaway vacuum at low energy, and so the vortex string is irrelevant to the QCD

string.

Next, we study the generic case of SO(N). The vacuum (2.5) breaks the SO(N)

gauge group completely and we expect that there are non-Abelian strings with the Z2(=

π1(SO(N))) charge. We choose N0 = N to make sure the confining phase at low energy

of the electric theory. (One can choose N0 = N − 1 alternatively, as in the case of N = 2

above, but the solution is the same as the one presented below.) Without losing generality,

we can choose the embedding of the SO(2) as just the first two raws and columns of the

SO(N).4 Then, relevant fields have the potential terms

VF + VD = h2
∣∣(ϕa

1)
2 − µ2

∣∣2 + h2
∣∣(ϕa

2)
2 − µ2

∣∣2 + 4h2 |ϕa
1ϕ

a
2|2

+
g2

8

(
(ϕa

1)
∗ǫabϕ

b
1 + (ϕa

2)
∗ǫabϕ

b
2

)2
. (3.8)

The terms involving the fields ϕi with i ≥ 3 and Φ are omitted since they are irrelevant.

For the D-term to be trivially satisfied, we turn on only the real part of the fields. Then

we combine the nontrivial real part of the fields as

ϕ̃1 ≡ Reϕ1
1 + iReϕ2

1, ϕ̃2 ≡ Reϕ1
2 + iReϕ2

2. (3.9)

The SO(2) acts as a U(1) phase gauge rotation on these complex scalar fields, and therefore

the following embedding of the ANO solution works,

ϕ̃1 = f(r)einθ, ϕ̃2 = if(r)einθ. (3.10)

The relative phase i in the above embedding is chosen so that the cross-term |ϕa
1ϕ

a
2 |2 of the

F-term potential in (3.8) vanishes. It can be shown straightforwardly that this embedding

is a solution of the whole system, when the other components of the fields are chosen to

be those of the vacuum. Note that the solution is the same as the solution (3.3) for the

N = 2 case though in different notations and we can write (3.10) as

(
ϕ1

1 ϕ2
1

ϕ1
2 ϕ2

2

)
= f(r)

(
cos(nθ) sin(nθ)

− sin(nθ) cos(nθ)

)
. (3.11)

We have a choice of how to embed the SO(2) in the whole SO(N). This should

provide an orientational moduli of the vortex string, as in the famous examples of the

U(N) non-Abelian vortex strings [18, 5]. The freedom of this choice can be seen in the

brane configuration: the D2-brane can choose one D4-branes among N of them, to end.5

In the large µ limit, this moduli space is expected to shrink and reduce to a point, because

the confining theory in the electric side doesn’t know which N one has started with before

taking the limit.

4Similar kinds of vortex solutions in SO(N) gauge theories have been constructed and studied in [21, 4].
5The actual orientational moduli is continuous while the choice of a D4-brane is discrete: the brane

configuration would show only the information of the Cartan sub-algebra.
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4. Stability of the vortex string solution

The vortex string solution obtained should be stable, because at the low energy the electric

theory is in the confining phase and so the flux tube does not decay by broadening itself.

However, the classical system of the dual theory which admits the vortex string solutions

as above looks similar to the one which admits so-called semilocal strings [22], since our

dual theory has Nf > N . It is known that the semilocal strings are unstable and develop

tachyonic instability for a particular parameter region of the theory. Actually, the vortex

strings in the meta-stable vacua studied in [9] have such instability. Here we show that,

on the contrary to the expectation from this similarity, our vortex string solution is stable

classically. Our vortex string is not semilocal,6 and in particular for N = 2 it has no moduli

space (except for the Φ0 degree of freedom).

Let us concentrate on the example of SO(2) with N0 = 2, in which the solution is

given by (3.3). (The system is in fact very similar to the one derived from N = 2 theory.)

Fluctuation analysis is easier with the following variables

φ1 ≡ 1√
2

(
q+
1 + (q−1 )†

)
, φ̃1 ≡ 1√

2

(
q+
1 − (q−1 )†

)
, (4.1)

and similar definition for φ2 and φ̃2 from q±2 . The solution lives in the φ1, φ2 sector

since (3.3) gives φ̃1 = φ̃2 = 0. The solution is stable against fluctuations of φi since

the analysis is just the same as the Abelian-Higgs model. So, let us turn on the fluctuation

φ̃i. The potential can be expanded to the second order in φ̃1 as

h2

4

(
|φ1|2 − 2µ2

)2
+

h2

4

∣∣∣φ1φ̃
†
1 − φ†

1φ̃1

∣∣∣
2
+

h2

2

(
2µ2 − |φ1|2

)
|φ̃1|2 +

g2

2

(
φ1φ̃

†
1 + φ̃1φ

†
1

)2
.

Because f(r) < µ for r < ∞, this is positive semi-definite, and so is the potential for

fluctuation of φ̃2. The remaining terms relevant in the potential (3.1) are the third and

the fourth terms in (3.1), but it is obvious that they are already of the second order in

fluctuations φ̃i and q±i>2, so they are positive semi-definite. We conclude that our vortex

string solution (3.3) is stable and has no moduli space except for massless modes associated

with Φ0. The stability of the solution (3.7) can be shown in the same manner.

In our topological argument in [9], there are only Z2 strings for the case of N > 2, in

contrast to the case of SO(2) where the winding number n ∈ Z is the topological charge.

We expect that the SO(N) vortex solutions with higher winding numbers we constructed

are meta-stable in this sense.7 There may be no topological obstacle to deform the vortex

configuration with a higher winding number to that with a lower one by the Z2 grading,

but there may be a potential barrier. The solutions in the case of SO(2) and the solutions

in SO(N) should be somehow related by a mass deformation of the quarks in the original

electric theory. One can change N by changing Nf while Nc being fixed. In this sense, the

“meta-stable” solutions (3.10) with higher winding numbers look rather natural.

6When N0 > N , the perturbative vacuum is supersymmetry-breaking and meta-stable, and the vacuum

moduli space is non-trivial. The vortex strings living there are semilocal, as shown in [9]. The semilocality

and its relevance to the confinement was discussed in [23, 7].
7Similar discussions for SU(Nc) QCD and its ZNc

strings can be found in [11, 24].

– 9 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
6

Note added: while we were writing this paper, we became aware of the paper [25] which

discusses relevance of our vortex string found in [9] to a QCD string.
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